Spatial Time Series

Spatial-Temporal Large Language Model for Traffic Prediction

Traffic prediction, a critical component for intelligent transportation systems, endeavors to foresee future traffic at specific locations using historical data. Although existing traffic prediction models often emphasize developing complex neural …

Non-Neighbors Also Matter to Kriging: A New Contrastive-Prototypical Learning

Kriging aims at estimating the attributes of unsampled geo-locations from observations in the spatial vicinity or physical connections, which helps mitigate skewed monitoring caused by under-deployed sensors. Existing works assume that neighbors' …

Low-Rank Robust Subspace Tensor Clustering for Metro Passenger Flow Modeling

Tensor clustering has become an important topic, specifically in spatio-temporal modeling, due to its ability to cluster spatial modes (e.g., stations or road segments) and temporal modes (e.g., time of the day or day of the week). Our motivating …

Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting

Accurate spatial-temporal traffic flow forecasting is crucial in aiding traffic managers in implementing control measures and assisting drivers in selecting optimal travel routes. Traditional deep-learning based methods for traffic flow forecasting …

KITS: Inductive Spatio-Temporal Kriging with Increment Training Strategy

Sensors are commonly deployed to perceive the environment. However, due to the high cost, sensors are usually sparsely deployed. Kriging is the tailored task to infer the unobserved nodes (without sensors) using the observed source nodes (with …

Dynamic Causal Graph Convolutional Network for Traffic Prediction

Peter Luh Best Memorial Award for Young Researcher

Correlated Time Series Self-Supervised Representation Learning via Spatiotemporal Bootstrapping

Correlated time series analysis plays an important role in many real-world industries. Learning an efficient representation of this large-scale data for further downstream tasks is necessary but challenging. In this paper, we propose a …

Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting

Accurate traffic forecasting is vital to intelligent transportation systems, which are widely adopted to solve urban traffic issues. Existing traffic forecasting studies focus on modeling spatial-temporal dynamics in traffic data, among which the …

Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow Profile

This paper is awarded with IEEE CASE 2020 Best Conference Paper Award

Tensor Completion for Weakly-dependent Data on Graph for Metro Passenger Flow Prediction

Low-rank tensor decomposition and completion have attracted significant interest from academia given the ubiquity of tensor data. However, the low-rank structure is a global property, which will not be fulfilled when the data presents complex and …