Transformer

PDiT: Interleaving Perception and Decision-making Transformers for Deep Reinforcement Learning

Designing better deep networks and better reinforcement learning (RL) algorithms are both important for deep RL. This work studies the former. Specifically, the Perception and Decision-making Interleaving Transformer (PDiT) network is proposed, which …

A Critical Perceptual Pre-trained Model for Complex Trajectory Recovery

The trajectory on the road traffic is commonly collected at a low sampling rate, and trajectory recovery aims to recover a complete and continuous trajectory from the sparse and discrete inputs. Recently, sequential language models have been …